Lineare Algebra

Obungsstunde T

- 1. Orga
- 2. GA
- 3. Priorisierte Wiederholung
- 4. Recop: A6
- 5. Nächste Woche
- 6. Lineare Abbildungen
- 7. Quiz

1.Orga

· Schaut euch 3 Blue 1 Brown an!

2. GA: Reflexion

• [3-5 Minuden] Rewind: Vorlesungen Woche 6

Lo Worum gings

1 -

3. Priorisierte Whl.

Skalarprodukt

- . Skalarprodukt X·y = <x, y> := xTy liefert eine Zahl! <,,>: R^ ×R^ → R
- · Osthogonal x·y = < x,y > = 0 = senkredit
- · Besonderheit vom Skalarprodukt und Norm:
 - bilden Vektoren ouf Zahlen (Skalore) ab!
 - Liefern Eigenschaften (Länge, Winkel, ...).

■ Orthogonal Subspaces

- · Sei U = span 2 b4,..., bn3, W = span 2 C4,..., cm3 zwei Subspaces des Vectorspace V
 - Hueu, wew: u.w=0 = sie sind orthogonal

Bsp. U= spon 2 0 3

Zwei Subspaces sind genou donn Orthogonal wenn alle thre Veldoven orthogonal zueinander sind

W= span & [] }

• Es gilt: Un W= 203

■ Orthogonal Complement

· Gilt zusätzlich dim U + dim W = dim V dann nennt man sie complementary!

und dans orthogonale Komplemente falls zusätzlich der gemeinsame Span erzeugend ist (V spornt): Span & bar..., bn. car..., cm 3 = V

(U¹ = orthogonales Komplement von U, bow. V = U ⊕ U¹)

Es gilt: N(A) = C(AT) , bew: Rn = N(A) & C(AT)

 $N(A^T) = C(A)^L$

Rm = N(AT) OC(A)

Projection on to Subspace

· Gregeben Subspace UCV and beV, b&V:

Projektion eines Vektors b auf Subspace U ist genau der Vektor $p \in U$ wit geringstem Abstand zu b.

4 Merke: Projektionslivie muss senkrecht zu U sein

4 Falls U= span {a}, a € V, a + 0:

$$proj_{U}(b) = \frac{aa^{T}}{a^{T}a}b$$

wober b-projulb) 1 a

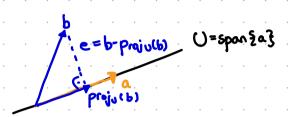
4 Falls U= span 2 a, ..., an 3:

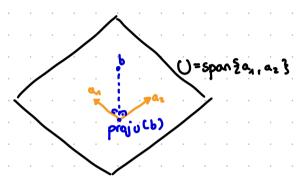
Proju(b) =
$$A\tilde{x}$$
, wobei $A^TA\tilde{x} = A^Tb$

= $A(A^TA)^A^Tb$ wenn A^TA invertible

= $P: Projection matrix$

4 Es gith ATA ist invertible A symmetric falls
A hat vollen rank





■ Einleitung: Least Is

· Wenn wir ein overdetermined LSE (mehr Zeilen als Spalten) bestrachten:

so können wir mit Sicherheit sagen, dans 76 mit Ax=6 hat beine Leg.

· Methode Weinster □: Frumindent aber finden wir für Ax + b ein X sodass

Least Squares = Literally fit LSE ohne Lösung, die beste Approximation finden

W Least Squares

- · Gegeben: A & Fmxn mit m>n und 77x: Ax=b
- Gesucht: Lösung \tilde{x} für $A\tilde{x} = b$

mit | || Ax-b ||2 - minimal Das x mit der kleinsten Norm || Ax-y ||2

· Lösung: Normal equations: = b auf ((A) projizier

4. falls A hat vollen rank:
$$x = (A^TA)^{-1}A^Tb$$

4. Recap: A6

- · Eure Lösungen
- · Sight nice aus!

· Meine Lösung

1. Underdetermined linear system (hand-in) (★☆☆)

Consider the underdetermined linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{pmatrix} -1 & 2 & 5 & -2 \\ -3 & 3 & 12 & -3 \\ 1 & -14 & -7 & -6 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} -6 \\ -15 \\ 8 \end{pmatrix}.$$

a) Determine the set of solutions $\mathcal{L} = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{b} \}$, i.e. write down an *explicit* characterization of this set of solutions.

Hint: In the lecture you learned that every solution can be obtained from a particular solution and a basis of N(A). Hence, an explicit characterization of \mathcal{L} can be given by finding such a particular solution and a basis of N(A) and then describing the possible combinations that are solutions.

- **b)** Write down a basis for N(A) (you might have already found it in the previous subtask), and also find a basis for C(A).
- c) What are the dimensions of N(A), C(A), $N(A^{\top})$, and $C(A^{\top})$?
- **d**) Determine a basis of $\mathbf{C}(A^{\top})$.

a)
$$\begin{bmatrix} -1 & 2 & 5 & -2 & | & -6 \\ -3 & 3 & 12 & -3 & | & -15 \\ 1 & -14 & -7 & -6 & 8 \end{bmatrix} - 3I$$

$$\Rightarrow 1 = \left\{ \begin{pmatrix} \lambda_1 & \delta_t \\ -t \\ -\lambda_{+2t} \end{pmatrix}, t \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} A \\ O \\ -A \\ O \end{pmatrix} + \begin{pmatrix} A \\ -A \\ 2 \\ 1 \end{pmatrix} \right\} , \ \ t \in \mathbb{R} \right\}$$

porticular solution all special solutions

Ax=b with x=0. Ax=0, \improx N(A)

b) Basis N(A):
$$\begin{cases} \binom{6}{1} \\ \binom{7}{4} \end{cases}$$

Basis C(A):
$$\left\{ \begin{pmatrix} -4 \\ -3 \\ A \end{pmatrix}, \begin{pmatrix} 2 \\ 8 \\ -44 \end{pmatrix}, \begin{pmatrix} 5 \\ A2 \\ -7 \end{pmatrix} \right\}$$

$$A = \begin{bmatrix} -1 & 2 & 5 & -2 \\ -3 & 3 & -2 & -3 \\ 1 & -14 & -4 & -6 \end{bmatrix}$$

= Basis (CA) da linear unabhängig 1

$$\Rightarrow$$
 dim $N(A^T) = 0$, dim $C(A^T) = 3$

Merkt euch:

Basis C(AT):
$$\left\{\begin{pmatrix} -A \\ 2 \\ 5 \\ -2 \end{pmatrix}, \begin{pmatrix} -3 \\ 3 \\ A2 \\ -3 \end{pmatrix}, \begin{pmatrix} A \\ -A4 \\ -7 \\ -6 \end{pmatrix}\right\}$$

Man hätte auch wie in den Musterlösungen

die Zeilenveldbien aus vref (A) nehmen können.

Achtung, gleiches gilt nicht für C, da vret und ref bloß Zeilenaps macht bleibt der Zeilenspan

5. Nächste Woche (8)

- · Least Squares
 - · Normal equation
- · Linear Regression ML, Anwerdung Least Squares
- · Orthonormal Basis
- · Gram Schmidt
- · Moore Penrose Inverse may be

6. Lineage Abbildungen

- Einleitung: Linear Tranformations
 - . Für Intuition CCA) 1 NCA)
 - · Lineare Abbildungen F: X -> Y, sind nix anderes als Funktionen Zwischen Vector Spaces

z.B. Sei
$$F: \mathbb{R}^3 \to \mathbb{R}^2$$
 mit
$$F(\begin{bmatrix} a \\ b \\ c \end{bmatrix}) = \begin{bmatrix} a \\ 2c \end{bmatrix}$$

• Jetzt: Da sie <u>linear</u> sind kann man jede Lineare Abbildung als eine <u>Madrix</u> A schreiben!

Wir haben $\forall F \exists A : F \iff A$ "

$$A \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ 2c \end{bmatrix}$$
 and $A : \mathbb{R}^3 \to \mathbb{R}^2$

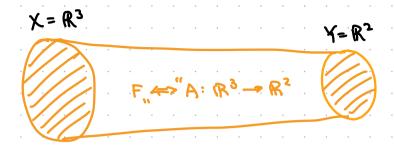
$$V = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$Av = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

• Betrachten wir nun den ganzen Raum: (was passiert mit allen Velktom des Definitionsraums X=R3)



- wie wis sehen: durch A/F verlieren wir eine Dimension!
- 4 das macht Sinn da wir von 30 (R3) in den 20 (R2) bilden.
- · Lass uns das generalisieren:

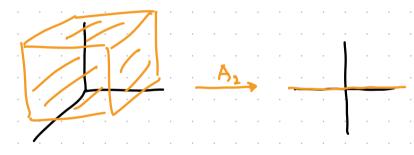


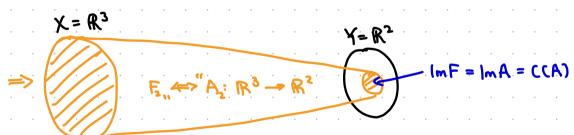
· Betrochten wir eine ander Abbildung F2 mit A2:

Sei
$$F_2: \mathbb{R}^3 \to \mathbb{R}^2$$
 mit

$$F_{2}(\begin{bmatrix} a \\ b \\ c \end{bmatrix}) = \begin{bmatrix} a \\ 0 \end{bmatrix}, A_{2} \begin{bmatrix} A & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

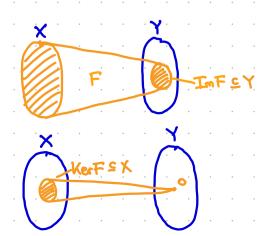
Jetet verlieren wir eine weiter Dimension!

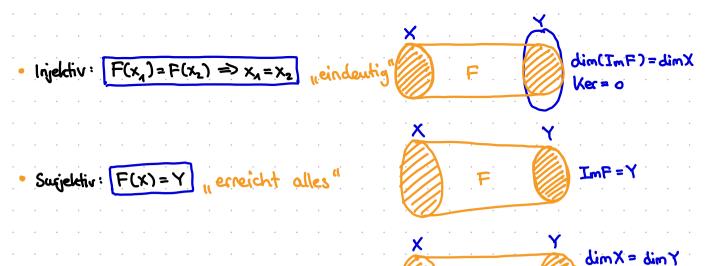




- Wie du siehst, es gibt viel zu analysiezer mit Dimensionen. Räumen etc.
- · Hier formal:
- Sei F: X→Y mit (=>" A: X → Y:
 - Image: ImF = F(X)=C(A)
 - Kernel: [KerF = N(A)]

 " was man vertient"





- · Bijektiv: linjektiv · sucjektiv u eineindeutig"
- · Schaut euch 3 Blue 1 Brown on!

7. Quiz

· Kahoot it!