
An Online Learning Environment for

the Introduction to Object

Orientation in Python

Bachelor Thesis

Kai Zheng

kzheng@ethz.ch

Chair of Information Technology and Education

ETH Zürich

Supervisors:

Prof. Dr. Juraj Hromkovič

Regula Lacher

March 5, 2024

Acknowledgements

Thank you Prof. Dr. Juraj Hromkovič and Regula Lacher for the delightful supervision

of this thesis. You have helped me with feedback and many suggestions improving the

learning environment.

Also, thank you Giovanni Serafini, Andre Macejko, my family, friends and all the volun-

teers testing and giving feedback on the environment.

i

Abstract

Object orientation is a fundamental concept in computer science education. This Bach-

elor thesis presents the development of an interactive online learning environment, de-

signed to accompany gymnasium level students and beyond looking to understand and

practice object orientation in Python.

By leveraging available web technologies, exciting design and pedagogical ideas are dis-

cussed and how they are implemented.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Goals . 2

1.4 Related Work . 2

2 Object Orientation in Python 3

2.1 Immutable Objects . 3

2.2 Mutable Objects . 3

2.3 Value Types and Reference Types . 4

3 The Learning Environment 5

3.1 Learning Objective . 5

3.2 Idea . 5

3.3 Demonstration . 6

3.3.1 Tutorial and Stage Page . 7

3.3.2 Level Page . 8

3.4 Pedagogical Thoughts . 9

3.4.1 Memory Graph . 9

3.4.2 Tips . 10

3.4.3 Pace . 11

iii

CONTENTS iv

3.5 Design . 12

3.5.1 User Experience . 12

3.5.2 User Interface . 13

4 Implementation 15

4.1 Overview . 15

4.1.1 Architecture . 16

4.2 Memory Graph Generation . 19

4.2.1 Compiler . 21

4.3 CodeIDE . 22

5 Conclusion 26

5.1 Reflection . 26

5.2 Outlook . 26

Bibliography 28

CHAPTER 1

Introduction

1.1 Background

The ABZ [1] at ETH Zurich is dedicated to the development of high-quality educational

resources in computer science, designed to cater to a broad spectrum of learners within

the Swiss educational system. Collaborating closely with the Chair of Information Tech-

nology and Education, the ABZ has published a range of books covering diverse topics

in the field. These publications target students from early primary school through to

gymnasium level. Complementing these texts, the ABZ also provides interactive learn-

ing environments, reinforcing the concepts introduced in the books.

1.2 Motivation

Object orientation is a central topic in computer science. As students take their first

steps in programming, it is the moment they are introduced to how variables actually

store their values in the computer. This is known to be a rather difficult topic to begin

with, hence highlighting the need for qualitative educational resources.

Online learning environments have several advantages. They make learning more inter-

active and engaging by turning theory into practice. Students can see concepts in action

and experiment with them in a playful way. In the context of object orientation, an in-

teractive platform is especially useful. It allows students to write and edit code, see how

their programs run, and understand how the computer handles memory.

1

1. INTRODUCTION 2

1.3 Goals

The main objective of this thesis is to plan, design and implement an interactive learn-

ing environment to teach students the basics of object orientation in Python; specifically,

values and reference types in Python and how they are implemented in the computer. It

should enable students to form initial intuitions about what objects are and how they are

implemented in the computer. In particular, the aim is to convey the concepts pedagog-

ically in an understandable and appealing way.

The result of this thesis is a well documented, reliable platform that can be used as an

accompaniment for lessons about object orientation in German speaking countries.

1.4 Related Work

There exist multiple other learning environments that are designed in cooperation with

ABZ. They cover various topics in computer science.

CHAPTER 2

Object Orientation in Python

Python, a high-level programming language, is known for its simplicity and readability,

making it a good choice for beginners in programming. One key concept is that every-

thing in Python is an object, categorized as either mutable or immutable. The following

explanation highlights the fundamentals, while abstracting away any optimizations and

other advanced features of Python.

2.1 Immutable Objects

Immutable objects cannot be altered once created. Operations that appear to modify an

immutable object actually result in the creation of a new object, with the reference being

updated to this new object.

In Python, immutable objects include strings, tuples, and numbers.

Listing 2.1: Example immutable objects

x = 1 # x -> 1

y = -1 # x -> 1; y -> -1

y = x # x -> 1; y -> 1 # x and y reference objects with the same value

2.2 Mutable Objects

Mutable objects can be changed after their creation. Modifications to these objects are

made directly, altering the content without affecting the identity of the object. This im-

plies that if multiple references point to the same mutable object, a change in one will be

reflected in the others.

3

2. OBJECT ORIENTATION IN PYTHON 4

In Python, mutable objects include lists, dictionaries, and sets,

Listing 2.2: Example mutable objects

x = [1, 2] # x -> [1, 2]

y = [-1] # x -> [1, 2]; y -> [-1]

y = x # x, y -> [1, 2] # x and y reference the same object

2.3 Value Types and Reference Types

Following that Python’s approach to data types is rather unique, the terms value types

and reference types are used instead, drawing on familiar terminology from other pro-

gramming languages for educational clarity and effectiveness.

This is because everything in Python is an object and hence per definition reference types,

but what makes some objects behave like value types is their immutable nature. Con-

cretely speaking, any change to immutable objects result in the creation of a new ob-

ject. This behaviour mimics value types, where variables directly hold the data and any

change results in a different instance of the data.

CHAPTER 3

The Learning Environment

3.1 Learning Objective

The primary learning objective of the environment is to deepen students understanding

of value types and reference types within the context of object orientation. As this requires

students to understand how the computer handles memory, they will need to engage

with diverse programs and accompanying memory graphs.

3.2 Idea

The interaction with the learning environment is intended to feel like a game which is

done by implementing a typical game structure. This means, presenting students with a

variety of levels to solve, alongside opportunities for practice and skill refinement.

The platform’s structure is divided into three stages (Figure 3.1), each containing a flexible

number of levels. Beginning with stage value types, then, progressing to stage reference

types, and finishing up with stage value types reference types. This structured progression

fosters a gradual and effective learning journey.

Figure 3.1: Stages, low fidelity prototype

5

3. THE LEARNING ENVIRONMENT 6

Furthermore, each level falls into one of three categories: code-the-memory, memory-to-

code, and coding-challenge (Figure 3.2). In code-the-memory, students are tasked with

creating a program that accurately reflects a given memory. Conversely, memory-to-code

requires them to fill the memory graph from a given program. The third category, coding-

challenge, is a special one; as students work on a programming task, the corresponding

memory graph is dynamically generated and displayed in real-time alongside their pro-

gram. I like to call it "learning by doing". These categories allow students to engage com-

prehensively with the material as well as ensuring exposure from multiple angles.

Figure 3.2: Categories, low fidelity prototype

3.3 Demonstration

Upon start, the first screen visible to the student is a loading animation (Figure 3.3). This

first screen will disappear after completing loading and initialization of the required data,

afterwards transitioning to either the tutorial page, if it is the student’s first time visiting

the environment, or the stage page, containing all the levels. Inside the stage page, stu-

dents can then navigate to the specific levels. This section briefly summarizes the fea-

tures and ideas of the tutorial page, stage page and level page.

Figure 3.3: Starting page

3. THE LEARNING ENVIRONMENT 7

3.3.1 Tutorial and Stage Page

The tutorial page (Figure 3.4) consists of two parts. An introduction and summary of

value and reference types in Python and a first challenge level task helping to get to know

the user interface.

The stage page (Figure 3.5) contains all the levels and works as the hub of the environ-

ment. It contains buttons to the respective levels, which float across the screen and are

colored based on the levels stage and progress. The castles at the bottom correspond to

the respective stage and are unlocked during the student’s journey.

Figure 3.4: Tutorial page

Figure 3.5: Stage page: 0%; 0% opening level; 33%; 100% progress

3. THE LEARNING ENVIRONMENT 8

3.3.2 Level Page

Once starting the level, a short gradient loading page is shown, before transitioning to

the level page. Levels of all three stages have the same interface, differentiating only in

color and castle. There are two main layers, the overlay, where information and controls

are displayed and the actual contents of the level, which are placed inside an interactive

level canvas containing custom, dynamic nodes (Figure 3.6).

Figure 3.6: Level page: stage value types, coding-challenge; stage reference types, code-

the-memory; stage reference types, memory-from-code

3. THE LEARNING ENVIRONMENT 9

This level canvas marks the design concept of the platform. Inspired by windows in op-

erating systems and canvas applications such as Figma [2], it gives many dimensions

of freedom, allowing students to have full control over their workspace. Inside the level

canvas are level nodes which contain different functionalities such as the coding IDE, the

environment containing the code editor and memory graph, or the task description. As

it is designed to work dynamically, students can insert further level nodes, for example

one containing the tutorial.

At the top are information about the stage, category and level. At the bottom are con-

trols, separated into three groups, ranging from level canvas controls to level controls to

navigation.

Upon completion, a popup appears and the colors become golden (Figure 3.7).

Figure 3.7: Level page: level completion success; stage completion success

3.4 Pedagogical Thoughts

3.4.1 Memory Graph

There are multiple options when thinking about how to display the memory graph from

a given program. Following that everything in Python is an object, I chose to show value

3. THE LEARNING ENVIRONMENT 10

types as overriding (Figure 3.8). Although this does not reflect Python’s memory man-

agement, it provides clear visualization and reflects the behaviour of Python’s memory,

which is what students need to understand.

Figure 3.8: Python; program; simplified

3.4.2 Tips

For students requiring assistance while solving a level, the environment offers strategi-

cally designed tips. These tips are less about direct instruction and more about providing

tools or additional functionalities that guide understanding. This approach follows the

teaching philosophy: "Tell me and I will forget, show me and I may remember; involve

me and I will understand." [3].

By leveraging the level canvas design, tips are added as level nodes to the level canvas. De-

pending on the category, there are different tip level nodes. For example, category code-

the-memory, comes with a tip that gives another memory, one synchronized to the pro-

gram the student is writing. This enables students to see their current progress towards

programming the expected memory graph (Figure 3.9).

3. THE LEARNING ENVIRONMENT 11

Figure 3.9: Tips: coding-challenge; code-the-memory; memory-from-code

3.4.3 Pace

Apart from levels, the environment also provides practice opportunities with a blank code

IDE. For this reason, levels are not meant to be solved in one go and a sudden increase in

difficulty is possible, allowing students to follow their own pace (Figure 3.10).

3. THE LEARNING ENVIRONMENT 12

Figure 3.10: Stage page: credits and practice popup

3.5 Design

The environment is designed to facilitate an intuitive, active and enjoyable learning ex-

perience. Providing as much freedom as possible and combining joyful with focus and

prioritization. This section highlights key design considerations.

3.5.1 User Experience

Inspired by the renowned language learning application Duolingo [4], to me achieving

a perfect balance between entertainment, joy and focus on learning, the environment

aims to provide a similar feeling. Students should perceive it as not just a learning plat-

form, but as a dynamic and engaging space, which is alive and gives freedoms to explore

(Figure 3.11, 3.12).

Figure 3.11: Infinite animations

3. THE LEARNING ENVIRONMENT 13

Figure 3.12: Freedom dimensions

3.5.2 User Interface

The user interface enhances the user experience by aiming to achieve an ideal balance

between functionality and simplicity. It should always be clear what the focus is, ele-

ments of the same type have the same design structure, elements of same functionality

are grouped together and important components are highlighted (Figure 3.13). Colors

add to a clear visual distinction between different states (Figure 3.14).

Figure 3.13: Level canvas buttons, level related buttons, navigation buttons; gradient

highlight for the active code IDE

3. THE LEARNING ENVIRONMENT 14

Figure 3.14: Colors

CHAPTER 4

Implementation

4.1 Overview

The implementation of the website includes multiple technologies. Foremost, it is split

between a front end and back ends. The front end is built using React [5] with TypeScript

[6], TailwindCSS [7] and Zustand [8]. User progress data are persisted in the users local

storage. On the back end, the technology stack is a Python, Flask [9] and Docker [10]

combination (Figure 4.1).

I chose React, TypeScript and Flask for their widespread popularity and extensive doc-

umentation, making them reliable and robust choices. Additionally, Flask is a Python

back end, which allows for seamless compilation of Python code. TailwindCSS is a mod-

ern CSS library enabling CSS directly inside HTML elements and Zustand enables easy

and straightforward global state management, a great alternative to Redux [11] or React

Context-API [12]. Lastly, Docker adds a layer of security by sand-boxing code execution.

Figure 4.1: Technology stack: front end, back end

In addition to the primary technologies, various libraries were integrated into the project,

chosen based on robust documentation and consistent maintenance, ensuring the en-

15

4. IMPLEMENTATION 16

vironment’s long-term reliability. These libraries include ReactFlow [13] for the imple-

mentation of the level canvas, CodeMirror [14] for the code editor inside code IDEs, Join-

tJS [15] to display the memory graph inside code IDEs, and D3 [16] for the interactive

floating level buttons.

The development process was supported by tools like Visual Studio Code [17] for writing

code, GitKraken [18] for version control, and GitHub [19] for source code management.

The website’s visual aspects, such as icons and graphics, were created using a range of

design tools. Procreate [20] was used for initial sketches, Figma [2] for prototyping and

interface design, and Adobe Photoshop [21] for final edits. Finally, AI technologies in-

cluding OpenAI GPT-4 [22], Google Gemini [23], GitHub Copilot [24], OpenAI DALL·E 3

[25], Midjourney [26] and Adobe Firefly [27] were utilized during the development as well

as designing process.

4.1.1 Architecture

The architecture of the front end is structured into three layers, each capturing a spe-

cific page in the user interface. On the server side, three distinct back ends support the

platform’s operations (Figure 4.2).

• Root.tsx: This component is responsible for routing of different pages. It initializes

each page with the necessary data fetched from the back end.

• Stage.tsx: This component corresponds to the stage page discussed earlier. It serves

as the interactive hub of the environment, containing all level buttons.

• Level.tsx: This component corresponds to the level page discussed earlier. It im-

plements the level canvas containing level nodes with the respective functionalities

such as the code IDE or text descriptions.

• data.py: This module houses all environment specific data, initializing the learn-

ing environment, individual levels and evaluating student’s solutions.

• code_ide.py: This module is responsible for the code IDE. It compiles student’s

code and generates the respective memory graph.

• user: This module manages user data, synchronized with already existing clouds

by ABZ.

4. IMPLEMENTATION 17

Figure 4.2: Overview architecture

4. IMPLEMENTATION 18

Figure 4.3: Overview level page

Figure 4.4: Overview th_data.py

4. IMPLEMENTATION 19

4.2 Memory Graph Generation

Let’s delve into the code_ide.py back end to understand how it generates a memory graph

from Python code (Figure 4.5). Equivalent to the code compilation process, when a front

end request is received, code_ide.py follows the principle of running a sub-process within

a Docker sandbox. This approach is primarily for security reasons, ensuring that code ex-

ecution is contained and controlled. Future enhancements such as limiting the number

of requests can be considered to further bolster security.

Figure 4.5: Overview codeide.py

In this process, the precompiler reduces complexity. It exits before memory_compiler.py

executes if it encounters any errors. This step also involves removing print statements

and normalizing the code. Subsequently, memory_encoder.py translates the output of

memory_compiler.py into a JSON string (Figure 4.6).

4. IMPLEMENTATION 20

Figure 4.6: Pipeline memory graph generation

Listing 4.1: script.py

if __name__ == "__main__":

code = sys.argv[1]

Precompiling

try:

validate_code(code)

code = remove_print_statements(code)

except ValueError as error:

print(error, file=sys.stderr)

sys.exit(1)

Compiling (Graph generating algorithm)

compiler = MemoryCompiler()

compiler.generate_memory_graph_for(code)

memory_graph = compiler.get_memory_graph()

4. IMPLEMENTATION 21

Encoding

encoder = MemoryEncoderManager()

memory_graph_json = encoder.encode_graph(memory_graph)

Output

print(memory_graph_json)

4.2.1 Compiler

Looking closer into memory_compiler.py, it begins with the normalized and error free

Python code and passes it through different stages of inspection. Key is the Inspect [?]

library with which it is possible to distinguish immutable and mutable objects as well as

filtering out non objects such as functions and classes. The abstract syntax tree is used in

order to track for deallocated objects and enables tracking the history for every line. This

algorithm could be further optimized but suffices for the small programs (Figure 4.7).

Figure 4.7: Overview memory_compiler.py

Listing 4.2: MemoryCompiler

class MemoryCompiler:

...

def _analyze(self, code, code_variables, code_objects):

tree = ast.parse(code)

4. IMPLEMENTATION 22

(1)

for node in ast.iter_child_nodes(tree):

graph = MemoryGraph()

previous_graph = self.__graphs[-1] if self.__graphs else

MemoryGraph()

(2)

self._execute(node, code_variables)

(3)

for var_name, var_value in code_variables.items():

if not (inspect.isclass(var_value) or

inspect.isfunction(var_value) or

inspect.ismodule(var_value)):

(4)

graph.add_variable(var_name, var_value, code_objects)

(5)

if previous_graph:

graph.mark_deallocated(previous_graph)

self.__graphs.append(graph)

def generate_memory_graph_for(self, code):

...

self._analyze(code, code_variables, code_objects)

...

4.3 CodeIDE

The CodeIDE is the React component which implements the levels nodes code IDE, inter-

acting with the code_ide.py back end (Figure 4.8). It revolves around two principal log-

ics: the CodeIDEConfig, which sets the environment’s configurations and the Zustand’s

CodeIDEStore, managing state and data, essentially storing the current and initial code

and graphs while updating the component’s state based on back end requests. Multi-

ple individual CodeIDE components are managed by unique CodeIDEStores, which are

4. IMPLEMENTATION 23

identified by their scopeId. This is a crucial and exciting feature which allows the Zustand

CodeIDEStore, by default globally accessible, to be limited to only one or any number of

components.

Figure 4.8: Overview CodeIDE.tsx

Listing 4.3: CodeIDEConfig

export default interface CodeIDEConfig {

type: "program" | "graph" | "program+graph";

mode: "read" | "write";

runnable: boolean;

4. IMPLEMENTATION 24

}

Listing 4.4: CodeIDEStore

export type CodeIDEStore = {

code: string;

codeOutput: string;

initialCode: string;

graph: CodeGraph;

graphOutput: { nodeIds: Set<string>, edgeIds: Set<string> }

initialGraph: CodeGraph;

...

};

export const useCodeIDEStore = (scopeId: string) => {

if (!storeMap.has(scopeId)) {

storeMap.set(scopeId, createCodeIDEStore(scopeId));

}

return storeMap.get(scopeId);

};

Listing 4.5: CodeIDE component

const CodeIDE: React.FC<CodeIDEProps> = ({

height,

scopeId,

config,

initialCode,

initialGraph,

}) => {

let codeIDEComponent;

switch (config.type) {

case "program+graph":

codeIDEComponent = ...; break;

case "program":

codeIDEComponent = <CodeProgram height={height} scopeId={scopeId}

config={config} />; break;

case "graph":

4. IMPLEMENTATION 25

codeIDEComponent = <CodeMemory height={height} scopeId={scopeId}

config={config} />; break;

default: ...

}

...

return (<div>{codeIDEComponent}</div>);

}

CHAPTER 5

Conclusion

5.1 Reflection

Creating the environment was an exciting journey. Going full circle conceptualizing, de-

signing, implementing and testing told me a lot. I started out with close to no previ-

ous experience in web development, coming from an iOS engineering background. This

forced me to start developing while still taking online courses and understanding core

concepts, presenting a steep learning curve. While often resulting in a trial-and-error

process, it proved to be immensely educational.

As the project progressed, I continuously refined the design and pedagogical frame-

works, shaped by new ideas and feedback from peers. Regrettably, my travels to Beijing

meant that I did not get as much feedback as I should have, which I realized towards the

end of the development process, missing improvements and changes. In hindsight, this

marks my foremost learning.

All in all, today, I can confidently say that I feel well engineering websites. In the end, I

am the most happy to imagine the future value of this environment, hopefully teaching

and inspiring many generations to come.

5.2 Outlook

The learning environment is fully operational, but here are a few additional intriguing

ideas and areas for further exploration:

• Level canvas: While the current freedom dimensions are beneficial, improvements

in zooming and node-dragging are necessary, as currently, it is only possible at

26

5. CONCLUSION 27

specific locations. Moreover, incorporating different preset layouts could improve

the user experience.

• Own Pace: The platform’s goal is to encourage practising between solving levels,

which is currently only possible with the empty code IDE page. Involving the use

of AI to generate challenges including various prompt possibilities could bring a

noticeable improvement.

• Personalization: Presently, all levels are preset and the platform is only available

in German. Including language options and allowing for custom levels would al-

low teachers and users to tailor the environment to meet their specific educational

needs and preferences.

To conclude, I propose one more feature, "peer inspiration". This feature enables stu-

dents within the same group, such as a class, to view each other’s progress (Figure 5.1).

What a fascinating way to foster motivation, engagement and a feeling of community.

Figure 5.1: Peer inspiration

Bibliography

[1] Ausbildungs- und Beratungszentrum für Informatikunterricht der ETH Zürich, “In-

formatikunterricht in zeiten der digitalisierung,” https://abz.inf.ethz.ch/, 2023.

[2] “Figma: Vector graphics editor and prototyping tool for digital design and collabo-

ration,” https://figma.com/, 2024.

[3] “Tell me and I forget; Teach me and I may remember; Involve me and I learn,” https:

//quoteinvestigator.com/2019/02/27/tell/, 2019.

[4] “Duolingo: Popular language-learning platform offering courses in various lan-

guages through interactive online exercises,” https://duolingo.com/, 2024.

[5] “React: JavaScript framework for building user interfaces, particularly in web devel-

opment,” https://react.dev/, 2024.

[6] “TypeScript: Typed superset of JavaScript that compiles to plain JavaScript,” https:

//typescriptlang.org/, 2024.

[7] “TailwindCSS: Utility-first CSS framework,” https://tailwindcss.com/, 2024.

[8] “Zustand: Alternative state-management solution for React,” https://docs.pmnd.

rs/zustand/, 2024.

[9] “Flask: Micro web framework written in Python,” https://flask.palletsprojects.

com/, 2024.

[10] “Docker: Platform for developing, shipping, and running applications in contain-

ers,” https://docker.com/, 2024.

[11] “Redux: State container for JavaScript apps, often used with React,” https://redux.

js.org/, 2024.

[12] “React Context API: State management tool for React apps, by React,” https://react.

dev/reference/react/useContext/, 2024.

28

https://abz.inf.ethz.ch/
https://figma.com/
https://quoteinvestigator.com/2019/02/27/tell/
https://quoteinvestigator.com/2019/02/27/tell/
https://duolingo.com/
https://react.dev/
https://typescriptlang.org/
https://typescriptlang.org/
https://tailwindcss.com/
https://docs.pmnd.rs/zustand/
https://docs.pmnd.rs/zustand/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://docker.com/
https://redux.js.org/
https://redux.js.org/
https://react.dev/reference/react/useContext/
https://react.dev/reference/react/useContext/

BIBLIOGRAPHY 29

[13] “ReactFlow: Library for building node-based editors and applications in React,”

https://reactflow.dev/, 2024.

[14] “CodeMirror: Code editor implemented in JavaScript for the browser.” https://

codemirror.net/, 2024.

[15] “JointJS: JavaScript diagramming library used to create static diagrams or diagram-

ming tools,” https://resources.jointjs.com/, 2024.

[16] “D3: JavaScript library for producing dynamic, interactive data visualizations in

web browsers,” https://d3js.org/, 2024.

[17] “Visual Studio Code: Source-code editor made by Microsoft for Windows, Linux,

and macOS,” https://code.visualstudio.com/, 2024.

[18] “GitKraken: Git client designed to improve version control,” https://gitkraken.

com/, 2024.

[19] “GitHub: Platform for hosting and collaborating on software development

projects,” https://github.com/, 2024.

[20] “Procreate: Raster graphics editor application for digital painting developed for iOS

and iPadOS,” https://procreate.com/, 2024.

[21] “Adobe Photoshop: Raster graphics editor,” https://www.adobe.com/de/products/

photoshop.html/, 2024.

[22] “OpenAI GPT-4: Generative AI model,” https://openai.com/product/gpt-4/, 2024.

[23] “Google Gemini: Generative AI model,” http://gemini.google.com/, 2024.

[24] “GitHub Copilot: AI pair programmer, year = 2024, howpublished = https://github.

com/features/copilot/.”

[25] “OpenAI DALLE 3: AI model generating images and art,” https://openai.com/

dall-e-3/, 2024.

[26] “Midjourney: AI model generating images and art,” https://midjourney.com/, 2024.

[27] “Adobe Firefly: AI model generating images and art,” https://firefly.adobe.com/,

2023.

https://reactflow.dev/
https://codemirror.net/
https://codemirror.net/
https://resources.jointjs.com/
https://d3js.org/
https://code.visualstudio.com/
https://gitkraken.com/
https://gitkraken.com/
https://github.com/
https://procreate.com/
https://www.adobe.com/de/products/photoshop.html/
https://www.adobe.com/de/products/photoshop.html/
https://openai.com/product/gpt-4/
http://gemini.google.com/
https://github.com/features/copilot/
https://github.com/features/copilot/
https://openai.com/dall-e-3/
https://openai.com/dall-e-3/
https://midjourney.com/
https://firefly.adobe.com/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Goals
	1.4 Related Work

	2 Object Orientation in Python
	2.1 Immutable Objects
	2.2 Mutable Objects
	2.3 Value Types and Reference Types

	3 The Learning Environment
	3.1 Learning Objective
	3.2 Idea
	3.3 Demonstration
	3.3.1 Tutorial and Stage Page
	3.3.2 Level Page

	3.4 Pedagogical Thoughts
	3.4.1 Memory Graph
	3.4.2 Tips
	3.4.3 Pace

	3.5 Design
	3.5.1 User Experience
	3.5.2 User Interface

	4 Implementation
	4.1 Overview
	4.1.1 Architecture

	4.2 Memory Graph Generation
	4.2.1 Compiler

	4.3 CodeIDE

	5 Conclusion
	5.1 Reflection
	5.2 Outlook

	Bibliography

